気候変動問題もまた複雑物理系である理由
他方、気候変動問題を一次元鉛直方向の数理モデルとして定式化し、大規模な計算機実験を行ったのが眞鍋叔郎である。眞鍋は地球大気の二酸化炭素濃度が2倍になれば、大気温度が約2.3℃上昇することを計算で導き出した。この問題は、1896年にスヴァンテ・アレーニウス(1903年ノーベル化学賞受賞、アインシュタインが1921年度ノーベル物理学賞を「光電効果の理論」によって受賞した時のノーベル賞委員会委員長(後述))が「二酸化炭素が2倍になると大気温度が6℃上昇する」と予測して以来の問題であるので、当然委員会は眞鍋の結果に注目していた。おりしも、気候変動問題、地球温暖化問題が深刻さを増しており世界中の関心の的となっていたことも受賞を後押ししたと思われる。この気象カオスから導かれる気候変動問題も複雑物理系であると委員会は認識したのだった。
[i] バタフライ・エフェクト 力学系の状態にわずかな変化を与えると、そのわずかな変化が無かった場合とはその後の系(システム)の状態が大きく異なってしまうという現象。気象学者ローレンツによる「蝶がはばたく程度の非常に小さな撹乱でも遠くの場所の気象に影響を与えるか」という問いに由来する。
[ii] ランジュバン方程式 確率変数の時間変化が確率変数の減衰項と外部からの揺動力で与えられるような関係を表す常微分方程式をフランスの物理学者ランジュバンにちなんでランジュバン方程式という。
[iii] フォッカー・プランク方程式 確率変数の分布関数が従う偏微分方程式で、分布関数の時間に関する一階微分と確率変数に関する二階微分で近似した分布関数の拡散方程式をフォッカー・プランク方程式という。ランジュバン方程式が与えられると対応するフォッカー・プランク方程式を決めることができる。